VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) VI-Semester Advanced Supplementary Examinations, July-2019

Optimization Methods for Engineers (Open Elective-VII)

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Define the term optimal solution.
- 2. How do you identify the unbounded solution in LPP?
- 3. How sensitivity analysis is useful?
- 4. Write the dual form for the following L.P.P

Maximize $Z=6 X_1+4 X_2$

Subjected to conditions

$$2X_1+4X_2 \le 30$$
, $3X_1+2X_2 \le 24$, $X_1+X_2 \ge 3$,

 $X_1, X_2 \ge 0$

- 5. State the necessary condition to apply the optimal solution for an initial solution.
- 6. List the possible options to get an initial solution for a transportation problem.
- 7. Is float being helpful for a project manager? Justify.
- 8. What are local minima and local maximum for one dimensional problem show them with simple graph.
- 9. Mention the limitations of graphical method.
- 10. Is it correct to choose the highest penalty in Vogel's approximation method? Justify

Part-B $(5 \times 10 = 50 \text{ Marks})$

11. Solve the following LPP by Simplex method:

[10]

Maximize $Z=X_1-X_2+3X_3$

Subjected to conditions

$$X_1+X_2+X_3 \le 10$$

$$2x_1 - 2x_2 + 3x_3 \le 10$$

$$2X_1-X_3 \le 2$$

and $x_1, x_2, x_3 \ge 0$.

12. Solve the following L.P.P. by dual simplex method.

[10]

Minimize
$$z = 2 x_1 + 2x_2 + 4x_3$$

subjected to conditions
 $2x_1 + 3x_2 + 5x_3 \ge 2$

$$x_1 + 4x_2 + 6x_3 \le 5$$

$$3x_1 + x_2 + 7x_3 \le 3$$

$$x_1, x_2, x_3 \ge 0$$

13. Find optimum solution for the following transportation problem.

EO CS

		D_1	D ₂	D_3	D ₄	D ₅	D ₆	Supply
	P ₁	1	2	1	4	5	2	30
plants	P ₂	3	3	2	1	4	3	50
	P ₃	4	2	5	9	6	2	75
	P ₄	3	1	7	3	4	6	20
	Requirement	20	40	30	10	50	25	

14. A project has the following activities

[10]

[5]

Activity	1-2	1-3	2-4	3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-9	8-10	9-10
Time (weeks)	4	1	1	1	6	5	4	8	1	2	1	8	7

Construct network diagram and identify critical path and summarize CPM calculations in tabular form and identify float an each activity.

- 15. a) How do you identify unbounded solution in Graphical method, show by graph with a suitable example and Simplex method.
- b) What is sensitivity analysis how it is useful for a production manager? [5]
- 16. a) Find the initial solution for the following transportation by north west corner rule. [5]

		V	Vareho	use		
		I	II	III	IV	Capacity
	Α	10	5	13	15	25
nt	В	3	9	18	3	40
plant	C	10	7	2	2	30
	D	5	11	9	7	15
	E	7	9	10	4	10
l-, , , i	Requirement	35	25	45	10	

- b) Use Cauchy's steepest descent method to minimize $f(x) = 4x_1^2 + 3x_2^2 5x_1x_2 8x_2$ starting from the point x1 = (0,0)
- 17. Answer any *two* of the following:
 - a) Solve the following LPP by graphical method

[5]

$$Minimize z = 2x_1 + 9x_2$$

subjected to conditions

$$x_1 + 4x_2 \ge 5$$

$$3x_1 + x_2 \ge 4$$

$$x_1, x_2, \ge 0$$

b) Explain the U-V method by taking a suitable example.

[5]

c) Solve the following by Lagrange's multiplier Minimize $f(x)=1/2(x_1^2+x_2^2+x_3^2)$ Subjected to $g1(x)=x_1-x_2=0$, $g2(x)=x_1+x_2+x_3-1=0$ [5]